157 research outputs found

    Hybrid Simulation Safety: Limbos and Zero Crossings

    Full text link
    Physical systems can be naturally modeled by combining continuous and discrete models. Such hybrid models may simplify the modeling task of complex system, as well as increase simulation performance. Moreover, modern simulation engines can often efficiently generate simulation traces, but how do we know that the simulation results are correct? If we detect an error, is the error in the model or in the simulation itself? This paper discusses the problem of simulation safety, with the focus on hybrid modeling and simulation. In particular, two key aspects are studied: safe zero-crossing detection and deterministic hybrid event handling. The problems and solutions are discussed and partially implemented in Modelica and Ptolemy II

    ModelicaGym: Applying Reinforcement Learning to Modelica Models

    Full text link
    This paper presents ModelicaGym toolbox that was developed to employ Reinforcement Learning (RL) for solving optimization and control tasks in Modelica models. The developed tool allows connecting models using Functional Mock-up Interface (FMI) toOpenAI Gym toolkit in order to exploit Modelica equation-based modelling and co-simulation together with RL algorithms as a functionality of the tools correspondingly. Thus, ModelicaGym facilitates fast and convenient development of RL algorithms and their comparison when solving optimal control problem for Modelicadynamic models. Inheritance structure ofModelicaGymtoolbox's classes and the implemented methods are discussed in details. The toolbox functionality validation is performed on Cart-Pole balancing problem. This includes physical system model description and its integration using the toolbox, experiments on selection and influence of the model parameters (i.e. force magnitude, Cart-pole mass ratio, reward ratio, and simulation time step) on the learning process of Q-learning algorithm supported with the discussion of the simulation results.Comment: accepted at EOOLT'1

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Lazy and incremental program generation

    Full text link
    corecore